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Abstract -- This paper presents a novel scheme for mode  
selection in mode matching problems. The technique is 
capable of reducing the size of a system considerably whilst 
retaining high accuracy. A procedure for efficient cascade 
analysis with the technique is also presented.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. A mode matching equivalent circuit with all ports 
terminated by their characteristic impedances. 

I. INTRODUCTION 

The mode matching technique was first proposed by 
Wexler in 1967 [1]. The usefulness and accuracy of his 
method assured it a great deal of attention from 
researchers since that time [2]-[4]. In its present form, 
mode matching is used extensively for the analysis of 
many types of waveguide discontinuity problems and 
promises an exciting future through its potential 
hybridization with other codes.  

Mode matching entails the expansion of tangential 
fields on both sides of a discontinuity into infinite 
summations of modes with unknown complex amplitudes. 
These amplitudes are then calculated by enforcing the 
boundary conditions at the discontinuity plane. In order to 
render the technique numerically viable, only a finite 
number of modes in each guide must be considered. This 
creates a convergence issue that has been discussed in the 
literature [5]. The essence of this issue is that enough 
modes must be used to ensure convergence. For 
discontinuities that differ markedly from the embedding 
structure, this number can be very high. 

The typical solution to this problem is only valid for 
cases where the step geometry is very simple, or excitation 
is only by one simple mode, e.g. TE10. In this case the 
problem is expressed in terms of alternate mode sets, e.g. 
TE-to-x/TM-to-x, where symmetry principles are used to 
argue that one type of mode, e.g. TM-to-x, will not be 
excited by the step at all, and can be safely neglected in 
the mode matching operation. While this approach does 
result in more reasonable sized problems, it does have 
certain drawbacks. 

First, it cannot be used with a great deal of consistency 
in cascaded systems of steps that do not all adhere to the 
symmetry conditions. Second, the calculated results of 
such an analysis are in terms of the alternate mode set, 
requiring conversion to the more standard TE-to-z/TM-to-
z formulation [6]. Third, the great flexibility of the mode 
matching method is compromised by the limitations on 
step geometry and modal excitation imposed by the 
approach. Finally it does not lend itself well to 
generalization; each problem must be separately 
considered by the user and an applicable code written for 
it.  

This paper proposes a new method of intelligent mode 
selection based on an improved equivalent circuit 
representation of the mode matching equations. The 
technique can be used to systematically reduce the mode 
matching content to contain only the critical interacting 
modes for a particular problem. We also show how this 
technique can be used to solve problems of cascaded steps 
with significant improvements in speed over the 
conventional approach. Finally, excellent physical insight 
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can be gained in an easy manner. The approach does not 
rely on the use of alternate mode sets and does not limit  
the modal excitation. It can also be used for discontinuities 
of any nature (e.g. rectangular-to-circular guide). 

The paper will start by showing the mode matching 
equations as derived in the literature. It will t hen give the 
equivalent circuit that represents these equations and show 
how it can be used to identify the modes that can be 
neglected. The technique will then be applied to a step 
discontinuity in rectangular waveguide and compared with 
the standard technique. The second part of the paper will 
show how the approach can be used to solve large 
cascaded systems.  

II . CIRCUIT REPRESENTATION 

The mode matching equations, derived in a similar 
fashion as in [4], for a step discontinuity are as in (1). 

 

 

 
  

(1) 
 

 
 
 
Here, a  and b  are the normalized complex mode 

amplitudes at ports A and B.  Z  and Y  are the respective 
modal wave impedances and admittances which define 
V and I , the equivalent voltages and currents.  

The entries of the [W] matrix are calculated from the 
double integral over the common aperture of the step, SB, 
of the cross product of the normalized frequency 
independent modal field patterns on either side of the step. 
This matrix is frequency independent. 

These equations can be represented by an equivalent 
circuit network shown in Fig. 1. This circuit is similar to 
that proposed by [7] except that their circuit is used 
exclusively for H-plane steps. In addition, we arrive at this 
circuit directly from the mode matching equations, making 
it applicable to all mode matching problems that can be 
expressed in the form of (1). In our view, this 
representation of the equivalent circuit is clearer and gives 
excellent physical insight. For the sake of simplicity the 
circuit is drawn with all ports terminated by their 
characteristic (wave) impedances. These ports would, in 
practice, be extended as transmission lines (as ill ustrated 
in [7]) to the next discontinuity or physical port. 

 

III . SUBCIRCUIT REDUCTION 

Consider now the case of an ideal transformer coupling 
mode m on side A with mode n on side B. In this case the 
transformer turns ratio is W(m,n). If this value becomes 
very low, the low voltage side of the ideal transformer 
occurs in series on the A side and the low current side 
occurs in shunt on the B side. As W(m,n) is reduced to 
zero, the transformer will l ook increasingly li ke a short 
circuit from the A side and an open circuit from the  B 
side. In the limit where W(m,n) tends to zero, the 
transformer can be completely neglected, or removed from 
the circuit, cutting the connection between modes m and n. 

Performing this operation for all the very small - or zero- 
elements of the [W] matrix would effectively cut the 
circuit in different places, possibly yielding a number of 
smaller independent subcircuits of a quantity and size 
dependent on the nature of the discontinuity’s geometry. It 
is then possible to selectively solve only the subcircuit(s) 
which relate to the particular mode(s) of interest, rather 
than the entire mode set at once. These subcircuits can be 
solved independently as they do not directly interact with 
each other.  

The procedure for extracting the subcircuit containing 
the first mode on side A is ill ustrated in Fig. 2 as an 
example.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. [W] matrix reduction 
 
First the row of the [W] matrix corresponding to that 

mode is calculated, 1. Then the columns corresponding to 
those row elements of magnitude greater than some 
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threshold, e.g. 10-10, are calculated, 2.  Next all those rows 
corresponding to non-negligible entries in any of the 
columns are calculated, 3, and similarly through 4 and 5 
and further until no further modes are added to the 
reduced system. The result is a reduced [W] matrix 
corresponding to a reduced set of modes on sides A and B. 
A similar procedure is followed to extract the subcircuit 
corresponding to a mode of interest on side B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Reduced mode matching vs. full mode matching 
 
It should be noted that in asymmetrical step geometries, 

virtuall y all [W] matrix elements have a non-zero 
magnitude. This implies that, to some degree, all the 
modes interact with each other in such a geometry. In such 
a case, the threshold magnitude may be set to a higher 

value, eliminating those transformers most approaching 
short and open circuits on side A and B respectively. 

Fig. (3a) compares the scattering parameters for the 
TE10 mode incident on a symmetrical down-step for the 
standard and reduced technique. Observe that both 
techniques give the same result, only the reduced 
technique uses 102 by 27 modes to the full technique’s 
400 by 112 modes.  

Fig. (3b) relates to an asymmetrical down-step where 
the [W] matrix element magnitude threshold has been 
increased to 0.1 resulting in a reduced system of 23 by 21 
modes. Deviation from the full method’s result is minimal, 
and certainly less than that of a standard analysis with 23 
by 21 modes. 

IV. CASCADE SYSTEM ANALYSIS 

If the step geometries are of a similar nature, the 
procedure applied to each step in a cascade system will 
result in the same modes being selected at each step, 
allowing them to be cascaded in the standard way. If, 
however, dissimilar steps are cascaded, which is the 
general case, different mode sets will be excited at 
adjacent steps, resulting in indirect mode interaction that 
must be accounted for. 

A procedure for cascade system analysis has been 
devised that exploits the abilit y to split steps into a number 
of independent equivalent subcircuits. The procedure is 
outlined in Fig. 4, with calculated scattering parameters 
for the TE10 mode using both the conventional full mode 
technique and the new reduced mode method.  

The procedure first split s all the steps into their 
equivalent independent subcircuits, indicated by the dots 
in Fig. 4. Note that simpler geometries result in a larger 
number of simpler subcircuits. Modes common to adjacent 
subcircuits are then identified. If these modes propagate 
suff iciently over the distance separating the adjacent steps 
then they can link the subcircuits, as indicated by the lines 
in Fig. 4.  

In the example, it is desired to calculate the parameters 
of the TE10 mode, shown in dark in the figure. In this case 
only that part of the system in dark need be solved to 
accurately find it parameters. The rest of the system (in 
light) does not at all i nteract and can be neglected. Note 
that the second and eighth steps interact with two 
subcircuits in the third and seventh steps respectively. This 
is due to the dissimilar nature of the steps in the example 
device. 

The savings in computational effort with the reduced 
mode system are considerable. The average equivalent 
step size is 13.6 modes per side in the reduced mode 
analysis to the 103.4 modes per side used in the full 
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analysis. Note that, beyond dropping non-propagating 
modes that are attenuated to below 1% between adjacent 
steps, the reduced analysis is equivalent to the full 
analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
Fig 4. Cascade System Example 

V. CONCLUSION 

An automated technique for the intelli gent selection of 
modes in mode matching problems has been presented. 
Non-interacting modes are systematicall y removed from 
the problem resulting in a smaller system to solve. The 
technique can also be used to speed up cascade analysis of 
waveguide discontinuities. Comparisons with the standard 
technique show exact agreement. 
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