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Abstract -- This paper presents a novel scheme for mode
selection in mode matching problems. The technique is
capable of reducing the size of a system consider ably whilst
retaining high accuracy. A procedure for efficient cascade
analysiswith the technique is also presented.

Fig 1.

A mode matching equivalent circuit with all ports
terminated by their characteristic impedances.

|. INTRODUCTION

The mode matching technique was first proposed by
Wexler in 1967 [1]. The usefulness and accuracy of his
method assured it a great deal of attention from
researchers since that time [2]-[4]. In its present form,
mode matching is used extensively for the analysis of
many types of waveguide discontinuity problems and
promises an exciting future through its potentia
hybridization with other codes.

Mode matching entails the expansion of tangential
fields on both sides of a discontinuity into infinite
summations of modes with unknown complex amplitudes.
These amplitudes are then calculated by enforcing the
boundary conditions at the discontinuity plane. In order to
render the technique numerically viable, only a finite
number of modes in each guide must be considered. This
creates a convergence issue that has been discussed in the
literature [5]. The essence of this issue is that enough
modes must be used to ensure convergence. For
discontinuities that differ markedly from the embedding
structure, this number can be very high.

The typical solution to this problem is only valid for
cases where the step geometry isvery smple, or excitation
is only by one smple mode, eg. TEj,. In this case the
problem is expressed in terms of alternate mode sets, e.g.
TE-to-x/TM-to-x, where symmetry principles are used to
argue that one type of mode, eg. TM-to-x, will not be
excited by the step at al, and can be safely neglected in
the mode matching operation. While this approach does
result in more reasonable sized problems, it does have
certain drawbacks.

First, it cannot be used with a great deal of consistency
in cascaded systems of steps that do not al adhere to the
symmetry conditions. Second, the calculated results of
such an analysis are in terms of the aternate mode set,
requiring conversion to the more standard TE-to-zZ/TM-to-
z formulation [6]. Third, the great flexibility of the mode
matching method is compromised by the limitations on
step geometry and modal excitation imposed by the
approach. Finaly it does not lend itsdf wel to
generalization; each problem must be separately
considered by the user and an applicable code written for
it.

This paper proposes a new method of intelligent mode
sdlection based on an improved equivalent circuit
representation of the mode matching equations. The
technique can be used to systematically reduce the mode
matching content to contain only the critical interacting
modes for a particular problem. We aso show how this
technique can be used to solve problems of cascaded steps
with significant improvements in speed over the
conventional approach. Finally, excelent physical insight
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can be gained in an easy manner. The approach does not
rely on the use of alternate mode sets and does not limit
the modal excitation. It can also be used for discontinuiti es
of any nature (e.g. redangular-to-circular guide).

The paper will start by showing the mode matching
equations as derived in the literature. It will then give the
equivalent circuit that represents these eguations and show
how it can be used to identify the modes that can be
negleded. The technique will then be applied to a step
discontinuity in redangular waveguide and compared with
the standard technique. The second part of the paper will
show how the approach can be used to solve large
cascaded systems.

Il. CIRCUIT REPRESENTATION

The mode matching equations, derived in a similar
fashion asin [4], for astep dscontinuity areasin (1).

V=W,  witn V, = diagl\/Z, ), +5.)
I, =T, with T, = diagy¥, e, -,
with xO(AB) and S, >S,
and W(m,n) = [[(e®xh”) [z

g

@

Here, a and b are the normalized complex mode
amplitudes at portsAand B. Z and Y aretherespedive
modal wave impedances and admittances which define
V and T, the eguivalent voltages and currents.

The entries of the [W] matrix are alculated from the
double integral over the @mmon aperture of the step, S;,
of the aoss product of the normalized frequency
independent modal field patterns on either side of the step.
This matrix is frequency independent.

These ejuations can be represented by an equivalent
circuit network shown in Fig. 1. Thiscircuit is Smilar to
that proposed by [7] except that their circuit is used
exclusively for H-plane steps. In addition, we arrive at this
circuit diredly from the mode matching equations, making
it applicable to al mode matching problems that can be
expresed in the form of (1). In our view, this
representation of the equivalent circuit isclearer and gves
excdlent physical insight. For the sake of simplicity the
circuit is drawn with al ports terminated by their
characteristic (wave) impedances. These ports would, in
practice be etended as transmisson lines (as ill ustrated
in [7]) to the next discontinuity or physical port.

I1l. SUBCIRCUIT REDUCTION

Consider now the @ase of an ideal transformer coupling
mode m on side A with mode n on side B. In this case the
transformer turns ratio is W{m,n). If this value becmes
very low, the low voltage side of the ideal transformer
ocaurs in series on the A side and the low current side
ocaurs in shunt on the B side. As W{m,n) is reduced to
zero, the transformer will | ook increasingly like a short
circuit from the A side and an open circuit from the B
side. In the limit where W{m,n) tends to zero, the
transformer can be mmpletely negleded, or removed from
the drcuit, cutting the mnnedion between modes mand n.

Performing this operation for all the very small - or zero-
elements of the [W matrix would effedively cut the
circuit in different places, possbly yielding a number of
smaller independent subcircuits of a quantity and size
dependent on the nature of the discontinuity’s geometry. It
is then possble to sdedively solve only the subcircuit(s)
which relate to the particular mode(s) of interest, rather
than the entire mode set at once These subcircuits can be
solved independently as they do not diredly interact with
each other.

The procedure for extracting the subcircuit containing
the first mode on side A is illustrated in Fig. 2 as an
example.
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Fig. 2. [W] matrix reduction

First the row of the [W] matrix corresponding to that
mode is calculated, 1. Then the wlumns corresponding to
those row elements of magnitude greater than some
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threshold, e.g. 10™, are a@lculated, 2. Next all those rows
corresponding to non-negligible entries in any of the
columns are @ culated, 3, and similarly through 4 and 5
and further until no further modes are added to the
reduced system. The result is a reduced [W] matrix
corresponding to a reduced set of modes on sides A and B.
A similar procedure is followed to extract the subcircuit
corresponding to a mode of interest on side B.
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Fig3.  Reduced mode matching vs. full mode matching

It should be noted that in asymmetrical step geometries,
virtually al [W matrix elements have a non-zero
magnitude. This implies that, to some degree al the
modes interact with each other in such a geometry. In such
a case, the threshold magnitude may be set to a higher

value, eliminating those transformers most approaching
short and open circuits on side A and B respedively.

Fig. (3a) compares the scattering parameters for the
TE;, mode incident on a symmetrical down-step for the
standard and reduced tedhnique. Observe that bah
techniques give the same result, only the reduced
technique uses 102 by 27 modes to the full technique's
400by 112 modes.

Fig. (3b) relates to an asymmetrical down-step where
the [W] matrix element magnitude threshold has been
increased to 0.1 resulting in a reduced system of 23 by 21
modes. Deviation from the full method’ sresult isminimal,
and certainly lessthan that of a standard analysis with 23
by 21 modes.

IV. CASCADE SYSTEM ANALYSIS

If the step geometries are of a smilar nature, the
procedure applied to each step in a cascade system will
result in the same modes being sdeded at each step,
allowing them to be @ascaded in the standard way. If,
however, dissmilar steps are ascaded, which is the
general case, different mode sets will be ecited at
adjacent steps, resulting in indired mode interaction that
must be accounted for.

A procedure for cascade system analysis has been
devised that exploits the abilit y to split stepsinto a number
of independent equivalent subcircuits. The procedure is
outlined in Fig. 4, with calculated scattering parameters
for the TE;o mode using bath the @mnventional full mode
technique and the new reduced mode method.

The procedure first splits all the steps into their
equivalent independent subcircuits, indicated by the dots
in Fig. 4. Note that simpler geometries result in a larger
number of simpler subcircuits. Modes common to adjacent
subcircuits are then identified. If these modes propagate
sufficiently over the distance separating the adjacent steps
then they can link the subcircuits, as indicated by thelines
inFig. 4.

In the example, it is desired to calculate the parameters
of the TE;, mode, shown in dark in the figure. In this case
only that part of the system in dark neel be solved to
acaurately find it parameters. The rest of the system (in
light) does not at all interact and can be negleded. Note
that the second and eighth steps interact with two
subcircuitsin the third and seventh stepsrespedively. This
is due to the dissmilar nature of the stepsin the example
device

The savings in computational effort with the reduced
mode system are mnsiderable. The average ejuivaent
step size is 13.6 modes per side in the reduced mode
analysis to the 1034 modes per side used in the full
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analysis. Note that, beyond dropping non-propagating
modes that are attenuated to below 1% between adjacent
steps, the reduced analysis is equivalent to the full
analysis.
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Fig4.  Cascade System Example

V. CONCLUSION

An automated technique for the intelli gent seledion of
modes in mode matching problems has been presented.
Non-interacting modes are systematically removed from
the problem resulting in a smaller system to solve. The
technique @n also be used to speal upcascade analysis of
waveguide discontinuiti es. Comparisons with the standard
technique show exact agreement.
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